首页> 外文OA文献 >Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection
【2h】

Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection

机译:同时面部关节的约束联合级联回归框架   行动单位识别和面部地标检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cascade regression framework has been shown to be effective for faciallandmark detection. It starts from an initial face shape and gradually predictsthe face shape update from the local appearance features to generate the faciallandmark locations in the next iteration until convergence. In this paper, weimprove upon the cascade regression framework and propose the Constrained JointCascade Regression Framework (CJCRF) for simultaneous facial action unitrecognition and facial landmark detection, which are two related face analysistasks, but are seldomly exploited together. In particular, we first learn therelationships among facial action units and face shapes as a constraint. Then,in the proposed constrained joint cascade regression framework, with the helpfrom the constraint, we iteratively update the facial landmark locations andthe action unit activation probabilities until convergence. Experimentalresults demonstrate that the intertwined relationships of facial action unitsand face shapes boost the performances of both facial action unit recognitionand facial landmark detection. The experimental results also demonstrate theeffectiveness of the proposed method comparing to the state-of-the-art works.
机译:级联回归框架已被证明对于面部标志检测是有效的。它从初始面部形状开始,并根据局部外观特征逐渐预测面部形状更新,以在下一次迭代中生成面部标志位置,直到收敛为止。在本文中,我们对级联回归框架进行了改进,并提出了用于同时进行面部动作单位识别和面部标志检测的约束联合级联回归框架(CJCRF),这是两个相关的面部分析任务,但很少一起使用。特别地,我们首先学习面部动作单元和面部形状之间的关系作为约束。然后,在提出的约束联合级联回归框架中,在约束的帮助下,迭代更新脸部界标位置和动作单元激活概率,直到收敛为止。实验结果表明,人脸动作单元与人脸形状的交织关系增强了人脸动作单元识别和人脸标志检测的性能。实验结果还证明了该方法与最新技术相比的有效性。

著录项

  • 作者

    Wu, Yue; Ji, Qiang;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号